

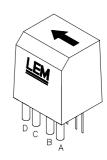
Current Transducer HA 10 to 25-NP

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data

	Primary Nominal Rms current I _{PN} (A)		Primary Current		
			measuring range I _P (A)		
Primary terminal connections	Series	Parallel	Series	Parallel	
HA 10-NP	± 5	± 10	0 ± 10	0 ± 20	
HA 25-NP	± 12.5	± 25	0 ± 25	0 ± 50	

Îp	Overload capacity (1 ms)	50 x I _{PN}	Α
V _{OUT}	Analogue output voltage @ ± I _{PN}	± 4	V
$R_{\scriptscriptstyle L}$	Load resistance	> 4	$k\Omega$
v _c	Supply voltage (± 5%)	± 15	V
I _c	Current consumption (max)	< 20	mA
$\mathbf{V}_{_{\mathrm{b}}}$	Rms rated voltage ¹⁾	500	V
V _d	Rms voltage for AC isolation test, 50 Hz, 1 mn		
	Primary to secondary	2.5	kV
	Primary 1 to primary 2 2)	1	kV
\mathbf{R}_{is}	Isolation resistance @ 500 $V_{\rm DC}$	> 500	$M\Omega$


Accuracy - Dynamic performance data				
X	Accuracy ³⁾ @ I _{PN} , T _A = 25°C, @ ± 15 V	± 1	%	
8 ,	Linearity 3)	± 1	%	
_		Max		
\mathbf{V}_{OE}	Electrical offset voltage @ $I_p = 0$, $T_A = 25$ °C	± 30	mV	
V _{OM}	Residual offset voltage @ $I_p = 0$			
0	after an overload of 3 x I _{PN}	± 20	mV	
\mathbf{V}_{OT}	Thermal drift of offset voltage $T_A = -10 + 80^{\circ}C$	± 3	mV/°K	
TCE _G	Thermal drift of gain $T_A = -10 + 80$ °C	± 0.07	%/°K	
t,	Response time @ 90 % of I _P	< 3	μs	
di/dt	di/dt accurately followed	> 50	A/µs	
f	Frequency bandwidth (- 3 dB) 4)	DC 50	kHz	

	General data			
T _A	Ambient operating temperature	- 10 + 80	°C	
T _s	Ambient storage temperature	- 25 + 85	°C	
m	Mass	10	g	
	Standards 5)	EN50178 (19	EN50178 (1994)	

Notes: 1) Overvoltage Category III, Pollution Degree 2

- $^{\mbox{\tiny 2)}}$ Primary 1 is between A and B, primary 2 is between C and D
- 3) Excludes the electrical offset
- ⁴⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency
- ⁵⁾ Please consult characterisation report for more technical details and application advice.

$I_{PN} = 5...25 A$

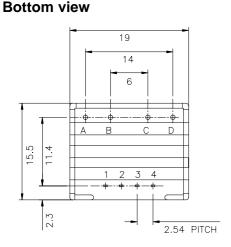
Features

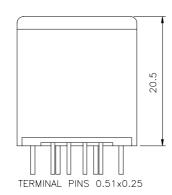
- Open loop transducer using Hall Effect
- Printed circuit board mounting
- Insulated plastic case to UL 94-V0
- Externally programmable for desired rating
- Galvanic isolation between primary windings.

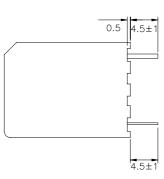
Advantages

- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption
- Wide dynamic range, 5 to 50 A in one package
- Easy to mount with automated handling systems.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


HANP980903/1


Left view

Dimensions HA 10 to 25-NP (in mm. 1 mm = 0.0394 inch)

Front view

Primary connections

Series A: I_p in

 $D: I_p$ out C onnect B to C

Parallel A + C: I_P in

B + D: I_p out

Isolated primary

A: Primary 1 I_P in B: Primary 1 I_P out C: Primary 2 I_P in D: Primary 2 I_D out

Secondary terminals

Terminal 1 : supply voltage - 15 V

Terminal 2 :0V

Terminal 3 : supply voltage + 15 V

Terminal 4 : output

Mechanical characteristics

• General tolerance ± 0.5 mm

• Fastening & connection of primary

HA 10-NP 4 pins Ø 0.71 mm **HA 25-NP** 4 pins Ø 1.4 mm

Recommended pcb hole

HA 10-NP 4 pins Ø 1 mm **HA 25-NP** 4 pins Ø 1.8 mm

· Fastening & connection of secondary

4 pins Ø 0.51 x 0.25 mm

Recommended pcb hole \emptyset 1 mm

Remarks

- $\bullet~\mathbf{V}_{\text{OUT}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.